Calculation of concentration of a solution

The study material explains process of calculation using direct (or indirect) proportionality between various quantities. It is based on definitions of important chemical terms and can give you an understanding of the essential chemical relationships.

Direct Proportionality	Indirect Proportionality
if 1 L of a solution contains $0,25 \mathrm{~mol}$ of a substance	5 g of a substance are found in 5 g of 100% pure solid compound
it follows from this that	it follows from this that
2 L of the solution contain $0,5 \mathrm{~mol}$ of the substance	5 g of the substance are found in 10 g of 50% pure solid compound
(i.e. twice higher volume of the solution contains twice more of moles of the	$\begin{aligned} & \text { (i.e. } 10 \mathrm{~g} \text { of the solid compound contain } 50 \%=10 \times 0,5 \\ & \\ & =5 \mathrm{~g} \text { of the substance) } \end{aligned}$
mathematical description:	mathematical description:
0,25 mol in 1 L	5 g of 100\%
x mol in 2 L	$\underline{x} \mathrm{~g}$ of 50\%
$x / 0,25=2 / 1$	$x / 5=100 / 50$
$x=(2 / 1) \times 0,25$	$x=(100 / 50) \times 5$
$x=0,5$	$x=10$
0,25 mol in 1 L	5 g of 100\%
* $0,5 \mathrm{~mol}$ in 2 L	* 10 g of 50%
$\downarrow \quad \downarrow$	$\downarrow \quad \uparrow$
* both values (substance amount and volume) are changed in the same direction	* the values (mass and \%) are changed in the opposite direction

Molar weight (MW)

$=$ mass of one mole of a substance in grams ($\mathrm{g} / \mathrm{mol}$).
The MW of a molecule is a sum of relative atomic weights A_{r} (expressed in grams per mole) of all elements building the molecule. The values of A_{r} are found in the Periodic table, e.g. A_{r} of $H=1, N=14, O=16 \rightarrow$ molar weight of $\mathrm{HNO}_{3}=1 \times 1+1 \times 14+3 \times 16=63 \mathrm{~g} / \mathrm{mol}$.

Density of a solution (ρ)

$=\underline{\text { mass }}$ of a specified volume of the solution $\left(\mathrm{g} / \mathrm{cm}^{3}=\mathrm{g} / \mathrm{mL}=\mathrm{kg} / \mathrm{dm}^{3}=\mathrm{kg} / \mathrm{L}\right)$; it is often labeled on a bottle containing the solution (e.g. $\rho=1,8 \mathrm{~g} / \mathrm{mL}$ means that 1 mL of the solution weights $1,8 \mathrm{~g}$).

Concentration

= quantity of a substance found in a specified volume (or mass) of a solution
a) molarity (molar concentration) = number of moles of a substance per litre of a solution (mol/L) - it can be used if the molar weight (MW) of the substance is known
b) osmolarity = number of moles of all particles (including ions to which a molecule dissociates) found in one litre of a solution (osmol/L); the osmotic active particles show an osmotic pressure of the solution
c) mass concentration = mass of a substance per specified volume of a solution ($\mathrm{g} / \mathrm{L}, \mathrm{mg} / \mathrm{dL}, \ldots$)
d) percent concentration (it is a special type of the mass concentration) $=$ parts (g or mL) of a solute per 100 parts (g or mL) of total solution

Molarity (mol x L
The molarity can be calculated either using the formula $\mathrm{c}=\mathrm{n} / \mathrm{V}$ ($\mathrm{c}=$ molarity, $\mathrm{n}=$ substance amount in moles, $\mathrm{V}=$ final volume of the solution in L) or directly from the definition* of the molar concentration. A direct proportionality between the concentration (c) and a related substance amount (n) is used.
(*) $1 M$ solution (read: one molar solution) means that $1 L$ of the solution contains 1 mol of a substance
$\left.{ }^{*}\right) 0,5 \mathrm{M}$ solution (read: half molar solution) means that 1 L of the solution contains $0,5 \mathrm{~mol}$ of a substance

Example - MOLARITY

Preparation of a solution of NaOH having a specified molarity; molar weight: $\mathrm{MW}(\mathrm{NaOH})=40 \mathrm{~g} / \mathrm{mole}$ (**)

1M solution	0,1 M solution
$=1 \mathrm{~mol}$ of NaOH in 1 L of the solution	$=0,1 \mathrm{~mol}$ of NaOH in 1 L of the solution
$=40 \mathrm{~g}$ of NaOH in 1 L of the solution	$=4 \mathrm{~g}$ of NaOH in 1 L of the solution
because	because
the mass of 1 mol is 40 g (see $\mathrm{MW}^{* *}$)	the mass of 1 mol is 40 g (see $\mathrm{MW}^{* *}$)
	it follows from this that
	the mass of 0,1 mol is ten times lower $=4 \mathrm{~g}$
	mathematical description:
	$1 \mathrm{~mol}=40 \mathrm{~g}$
	$\underline{0,1 \mathrm{~mol}=x \mathrm{~g}}$
	it is the direct proportionality
	$x / 40=0,1 / 1$
	$x=(0,1 / 1) \times 40$
	$\boldsymbol{x}=4 \mathrm{~g}$

How many grams of NaOH do you need for preparation of $0,5 \mathrm{~L}$ of the NaOH solutions (both 1 M and $0,1 \mathrm{M}$)?

1M solution	$\mathbf{0 , 1 \mathbf { M } \text { solution }}$
$=1$ mole of NaOH in 1 L of the solution	$=0,1 \mathrm{~mole}$ of NaOH in 1 L of the solution
$=40 \mathrm{~g}$ of NaOH in 1 L of the solution	$=4 \mathrm{~g}$ of NaOH in 1 L of the solution
40 g in 1 L	$\mathbf{4 g}$ in 1 L
$\underline{\mathrm{x} \mathrm{g} \mathrm{in} 0,5 \mathrm{~L}}$	$\underline{\mathrm{xg} \text { in } 0,5 \mathrm{~L}}$
	it is the direct proportionality
it is the direct proportionality	$\mathrm{x} / 4=0,5 / 1$
$\mathrm{x} / 40=0,5 / 1$	$\mathrm{x}=(0,5 / 1) \times \mathbf{4}$
$\mathrm{x}=(0,5 / 1) \times 40$	$\mathbf{x = 2 \mathbf { g }}$
$\mathbf{x = 2 0 \mathbf { g }}$	

We need $20 \mathrm{~g}(2 \mathrm{~g}$ respectively) of NaOH to prepare $0,5 \mathrm{~L}$ of $1 M(0,1 M)$ solution.

Problems

1.1 300 mL of a solution contain $17,4 \mathrm{~g}$ of $\mathrm{NaCl}(\mathrm{MW}=58 \mathrm{~g} / \mathrm{mol})$. What is the concentration of the solution? solution:

$\mathrm{MW}=58 \mathrm{~g} / \mathrm{mol}$	\Rightarrow	$1 \mathrm{~mol}=58 \mathrm{~g}$
		$\mathrm{x} \mathrm{mol}=17,4 \mathrm{~g}$
		it is the direct proportionality
		$x / 1=17,4 / 58$
		$\mathrm{x}=0,3 \mathrm{~mol}$
$17,4 \mathrm{~g}$ of $\mathrm{NaCl}=0,3 \mathrm{~mol}$ of NaCl	\Rightarrow	$17,4 \mathrm{~g}$ in 300 mL
		$=0,3 \mathrm{~mol}$ in 300 mL
		x mol in 1000 mL (because $1 \mathrm{~L}=1000 \mathrm{~mL}$)
		it is the direct proportionality
		$x / 0,3=1000 / 300$
		$x=(1000 / 300) \times 0,3$
		$\mathrm{x}=1 \mathrm{~mol}$
definition of the molarity	\Rightarrow	1 mol is found in in $1000 \mathrm{~mL}=1 \mathrm{~mol} / \mathrm{L}=\mathbf{1 M}$ solution

Molar concentration of the solution is $1 \mathrm{~mol} / \mathrm{L}$.
1.2 $2,5 \mathrm{~L}$ of a solution contain $4,5 \mathrm{~g}$ of glucose ($\mathrm{MW}=180 \mathrm{~g} / \mathrm{mol}$). What is the molarity of the solution? (0,01 M)
1.3 What is the mass of glycine (MW = $75 \mathrm{~g} / \mathrm{mol}$) found in 100 mL of its 3 mM solution? $(22,5 \mathrm{mg})$ solution:

3 mM solution	\Rightarrow	3 mmol in 1 L of the solution (= definition of molarity)
		$=0,003 \mathrm{~mol}$ in 1000 mL of the solution
		$x \mathrm{~mol}$ in 100 mL
		it is the direct proportionality
		$x / 0,003=100 / 1000$
		$x=(100 / 1000) \times 0,003$
		$\mathrm{x}=0,0003 \mathrm{~mol}$
$\mathrm{MW}=75 \mathrm{~g} / \mathrm{mol}$	\Rightarrow	75 g of glycine $=1 \mathrm{~mol}$ of glycine
		xg of glycine $=0,0003 \mathrm{~mol}$ of glycine
		it is the direct proportionality
		$\mathrm{x} / 75=0,0003 / 1$
		$x=(0,0003 / 1) \times 75$
		$\mathrm{x}=0,0225 \mathrm{~g}=\mathbf{2 2 , 5} \mathbf{~ m g}$

The solution contains $22,5 \mathrm{mg}$ of glycine.
1.4 How many grams of $\mathrm{NaCl}(\mathrm{MW}=58,5 \mathrm{~g} / \mathrm{mol})$ are found in 2 L of its $0,1 \mathrm{M}$ solution? $(11,7 \mathrm{~g})$
1.5 Calculate the volume of $0,1 \mathrm{M}$ solution of CaCl_{2} containing 4 mmol of Cl^{-}. (20 mL) solution:

$\mathrm{CaCl}_{2} \rightarrow 1 \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}$	\Rightarrow	1 mol of CaCl_{2} contains 2 mol of Cl^{-}
$0,1 \mathrm{M}$ solution of CaCl_{2}	\Rightarrow	$0,1 \mathrm{M}$ solution of CaCl_{2} is $0,2 \mathrm{M}$ solution of Cl^{-}
		(because 1 molecule of CaCl_{2} contains 2 Cr)
4 mmol of Cl^{-}	\Rightarrow	$=0,004 \mathrm{~mol}^{\text {of } \mathrm{Cl}^{-}}$
0,2 M solution of Cl^{-}	\Rightarrow	$=1000 \mathrm{~mL}$ of the solution contains $0,2 \mathrm{~mol}$ of Cl^{-}
		$x \mathrm{~mL}$ of the solution contains $0,004 \mathrm{~mol}$ of Cl
		it is the direct proportionality
		$x / 1000=0,004 / 0,2$
		$x=(0,004 / 0,2) \times 1000$
		$x=20 \mathrm{~mL}$

4 mmol of Cl are found in 20 mL of the solution.
1.6 Calculate the volume of $0,2 \mathrm{M}$ solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ containing 2 mmol of Na^{+}. (5 mL)

Osmolarity (osmol/L)

The osmolarity is related to all solutes dissolved in a solution. It is expressed as number of all osmotic active particles found in one litre of the solution. The osmotic active particles are either ions to which a molecule found in the solution dissociates or other molecules-nonelectrolytes (e.g. glucose which doesn't dissociate) present in the solution. The value of the osmolarity of dissolved substance is either higher or the same as molarity of the substance found in the solution.
isotonic solutions = solutions having the same value of the osmotic pressure or osmolarity
(e.g. blood plasma \times saline)
hypotonic solution = solution of lower osmolarity in relation to the other solution
hypertonic solution $\quad=$ solution of higher osmolarity in relation to the other solution

Example - OSMOLARITY

A solution contains $150 \mathrm{mmol} / \mathrm{L}$ of NaCl and $100 \mathrm{mmol} / \mathrm{L}$ of glucose
\Rightarrow molarity (= molar concentration) of NaCl is $150 \mathrm{mmol} / \mathrm{L}$ and molarity of glucose is $100 \mathrm{mmol} / \mathrm{L}$
Osmolarity of the solution can be calculated as a sum of molarity of all particles present in the solution:

- $\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}\left(=1 \mathrm{~mol}\right.$ of NaCl dissociates to 1 mol of Na^{+}and 1 mol of $\mathrm{Cl}^{-}=2 \mathrm{~mol}$ of osmotic active particles) \Rightarrow if molarity of NaCl is $150 \mathrm{mmol} / \mathrm{l}$ the molarity of Na^{+}is $150 \mathrm{mmol} / \mathrm{L}$ and the molarity of Cl^{-}is $150 \mathrm{mmol} / \mathrm{L}$ as well
- glucose \rightarrow glucose (it is not dissociated $=1 \mathrm{~mol}$ of osmotic active particle) \Rightarrow its molarity is $100 \mathrm{mmol} / \mathrm{L}$
\Rightarrow osmolarity of the solution is $(2 \times 150)+100=\mathbf{4 0 0} \mathbf{~ m o s m o l} / \mathbf{L}$

Problems

1.7 Calculate the osmolarity of each of the four solutions. Which of the solutions are isotonic?
a) $0,15 \mathrm{M} \mathrm{NaCl}$
(0,30 osmol/L)
b) $0,15 \mathrm{M} \mathrm{MgCl}_{2}$
(0,45 osmol/L)
c) $0,15 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$
(0,45 osmol/L)
d) $0,15 \mathrm{M}$ glucose
(0,15 osmol/L)
solution:

$\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$	\Rightarrow	1 mol of NaCl contains 2 mol of osmotic active particles
2 ions		$\underline{0,15 \mathrm{~mol} \text { of } \mathrm{NaCl} \text { contains } \times \mathrm{mol} \text { of osmotic active particles }}$
		it is the direct proportionality
		$x / 2=0,15 / 1$
		$\mathrm{x}=(0,15 / 1) \times 2$
		$\mathrm{x}=0,3 \mathrm{~mol}$ of osmotic active particles $=0,3$ osmol
$0,15 \mathrm{M} \mathrm{NaCl}=0,15 \mathrm{~mol} / \mathrm{L} \mathrm{NaCl}$	\Rightarrow	$0,15 \times 2=\mathbf{0 , 3 0} \mathbf{o s m o l} / \mathrm{I}$ solution of NaCl
$\mathrm{MgCl}_{2} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-}$		
3 ions	\Rightarrow	$0,15 \times 3=\mathbf{0 , 4 5} \mathbf{0 s m o l} / \mathbf{L}$ solution of MgCl_{2}
$\mathrm{Na}_{2} \mathrm{HPO}_{4} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{HPO}_{4}{ }^{2-}$		
3 ions	\Rightarrow	$0,15 \times 3=\mathbf{0 , 4 5}$ osmol/L solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
glucose \rightarrow glucose		
1 molecule	\Rightarrow	0,15 $\times 1=\mathbf{0 , 1 5}$ osmol/L solution of glucose

$0,15 \mathrm{M}$ solution of MgCl_{2} is isotonic with $0,15 \mathrm{M}$ solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$. The solutions of $0,15 \mathrm{M} \mathrm{NaCl}$ and $0,15 \mathrm{M}$ glucose are hypotonic compared with the solutions of $0,15 \mathrm{M} \mathrm{MgCl}_{2}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$.
1.8 Saline (= physiological solution) is 150 mM solution of NaCl . Which of the following solutions are isotonic with saline?
a) 300 mM glucose
b) 50 mM CaCl 2
c) 300 mM KCl
d) $0,15 \mathrm{M} \mathrm{NaH} \mathrm{NO}_{4}$

Help: calculate the osmolarity of the saline and compare it with calculated osmolarities of the solutions solution:

$\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$	\Rightarrow	$150 \times 2=\mathbf{3 0 0} \mathbf{~ m o s m o l} / \mathrm{L}$
glucose \rightarrow glucose	\Rightarrow	$300 \times 1=\mathbf{3 0 0} \mathbf{~ m o s m o l} / \mathrm{L}$
$\mathrm{CaCl}_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}$	\Rightarrow	$50 \times 3=150 \mathrm{mosmol} / \mathrm{L}$
$\mathrm{KCl} \rightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}$	\Rightarrow	$300 \times 2=600 \mathrm{mosmol} / \mathrm{L}$
$\mathrm{NaH}_{2} \mathrm{PO}_{4} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	\Rightarrow	$0,15 \mathrm{M}=150 \mathrm{mM} \Rightarrow 150 \times 2=\mathbf{3 0 0} \mathbf{~ m o s m o l} / \mathrm{L}$

Saline is isotonic with 300 mM solution of glucose and $0,15 \mathrm{M}$ solution of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$.
1.9 Calculate osmolarity of 100 mM solutions of
a) $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
($200 \mathrm{mosmol} / \mathrm{L}$)
b) $\mathrm{Na}_{2} \mathrm{HPO}_{4} \quad(300 \mathrm{mosmol} / \mathrm{L})$
c) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
(400 mosmol/L)
1.10 Calculate molarity of 120 mosmol/L solutions of:
a) $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
(60 mM)
b) $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
(40 mM)
c) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
(30 mM)
solution:
Molarity is either lower or the same as osmolarity. The osmolarity depends on number of ions to which a molecule dissociates. If the osmolarity of the solution is 120 mosmol/L it must be divided by number of ions to find a value of the related molarity.

Percent concentration ($\mathrm{g} / 100 \mathrm{~g}$ or $\mathrm{ml} / 100 \mathrm{~mL}$ or $\mathrm{g} / 100 \mathrm{~mL}=\%$)
It is generally expressed as parts of a solute per 100 parts of total solution (per cent = „per one hundred")
There are three basic forms of the expression:
a) weight per unit weight (w / w) it is expressed in grams of solute per 100 g of the solution $(\mathrm{g} / 100 \mathrm{~g}=\%)$
$10 \%(\mathrm{w} / \mathrm{w})$ solution of NaOH means that 100 g of the solution contain 10 g of NaOH
(it is prepared from 10 g of NaOH and 90 g of $\mathrm{H}_{2} \mathrm{O}$)
$10 \%(\mathrm{w} / \mathrm{w})$ solution of KCl means that 100 g of the solution contain 10 g of KCl
(it is prepared from 10 g of KCl and 90 g of $\mathrm{H}_{2} \mathrm{O}$)
b) volume per unit volume (v / v) it is expressed in millilitres of solute per 100 mL of the solution $(\mathrm{ml} / 100 \mathrm{~mL}=\%)$
$5 \%(\mathrm{v} / \mathrm{v})$ solution of alcohol means that 100 mL of the solution contain 5 mL of alcohol (it is prepared from 5 mL of alcohol and the rest of water to reach 100 mL of the solution)
c) weight per unit volume $(\mathrm{w} / \mathrm{v})$ it is expressed in grams of solute per 100 mL of the solution $(\mathrm{g} / 100 \mathrm{~mL}=\%)$

This expression of the percent concentration is often used in a medicine. It can be used if the solution is diluted (= its concentration is low) as much as its density is close to density of distilled water (i.e $1 \mathrm{~mL} \sim 1 \mathrm{~g}$)
$2 \%(\mathrm{w} / \mathrm{v})$ solution of KOH means that 100 mL of the solution contain 2 g of KOH

If a solution of specified percent concentration may be prepared we use the same mass of a substance regardless the chemical formula of the substance (molar weight of the substance is not used in the calculation):
5% solution of a protein is prepared from $5 \boldsymbol{g}$ of the protein and $95 \mathrm{~g}(\mathrm{~mL})$ of water.
5% solution of glucose is prepared from 5 g of glucose and $95 \mathrm{~g}(\mathrm{~mL})$ of water.
5% solution of NaCl is prepared from 5 g of NaCl and $95 \mathrm{~g}(\mathrm{~mL})$ of water.

Example - PERCENT CONCENTRATION

1.11 Calculate mass of NaCl and mass of water which are needed for preparation of $600 \mathrm{~g} \mathrm{of} 5 \%$ solution.
(30 g of NaCl and 570 g of water)
solution:

$5 \%(\mathrm{w} / \mathrm{w})$ solution	\Rightarrow	5 g of NaCl in 100 g of its solution
		$\underline{x} \mathrm{~g}$ of NaCl in 600 g of its solution
		it is the direct proportionality
		$\mathrm{x} / 5=600 / 100$
		$\mathrm{x}=(600 / 100) \times 5$
		$\mathbf{x}=\mathbf{3 0} \mathbf{g}$ of NaCl
$600-\mathbf{3 0 = 5 7 0} \mathbf{g}$ of water		

$$
5 \%=5 / 100=0,05 \quad \Rightarrow \quad 600 \mathrm{~g} \times 0,05=30 \mathrm{~g}
$$

The solution is prepared from 30 g of NaCl and $570 \mathrm{~g}(=\mathrm{mL})$ of water (because the density of water $\rho=1 \mathrm{~g} / \mathrm{mL}$).
1.12 What mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (purity 96%) do you need to prepare 250 g of 8% solution? $(20,83 \mathrm{~g})$ solution:

8\% (w/w) solution	\Rightarrow	8 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 100 g of the solution
		xg of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 250 g of the solution
		it is the direct proportionality
		$x / 8=250 / 100$
		$x=(250 / 100) \times 8$
		$\mathrm{x}=\mathbf{2 0} \mathrm{g}$
purity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is 96%	\Rightarrow	100 g of the solid substance contain 96 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
		x g of the solid substance contain 20 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
		it is the direct proportionality
		$x / 100=20 / 96$
		$x=(20 / 96) \times 100$
		$x=20,83 \mathrm{~g}$
the indirect proportionality can be used as well	\Rightarrow	we need 20 g of 100\% pure $\mathrm{Na}_{2} \mathrm{CO}_{3}$
		or x g of 96% pure $\mathrm{Na}_{2} \mathrm{CO}_{3}$
		$x / 20=100 / 96$
		$x=(100 / 96) \times 20=20,83 \mathrm{~g}$

We need $20,83 \mathrm{~g}$ of $96 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ to prepare 250 g of 8% solution.

Problems

1.13 Calculate volumes of ethanol and water found in 250 mL of $39 \%(\mathrm{v} / \mathrm{v})$ solution of ethanol.
($97,5 \mathrm{~mL}$ of ethanol, $152,5 \mathrm{~mL}$ of water).
1.14 How many grams of NaOH (purity 98%) is needed for preparation of $0,5 \mathrm{~L}$ of its $10 \%(\mathrm{w} / \mathrm{v})$ solution? (51 g)
1.1545 g of NaNO_{3} were used for preparation of $3 \%(\mathrm{w} / \mathrm{v})$ solution. Calculate the volume of the solution. $(1,5 \mathrm{~L})$

Conversion between molarity and percent concentration

It is useful to start the conversion from definitions of the concentrations:

- molarity = substance amount of a solute found in 1 L of its solution (mol/L)
- percent concentration: mass of a substance in 100 g of its solution ($\mathrm{g} / 100 \mathrm{~g}=\%$)

1) molarity \rightarrow percent concentration

$$
\mathrm{mol} / \mathrm{L} \rightarrow \mathrm{~g} / 100 \mathrm{~g}=\%
$$

\Rightarrow the volume $(\mathrm{V}=1 \mathrm{~L})$ must be converted to the mass (m) of the solution using its density $\rho(\rho=m / \mathrm{V})$
\Rightarrow the substance amount can be then expressed as the number of moles found in $\mathbf{1 0 0} \mathbf{g}$ of the solution
\Rightarrow the substance amount is finally converted to the mass of a substance using molar weight ($m=n \times M W$)
2) percent concentration \rightarrow molarity $\quad \%=\mathrm{g} / 100 \mathrm{~g} \rightarrow \mathrm{~mol} / \mathrm{L}$
\Rightarrow the mass of the solution ($\mathrm{m}=100 \mathrm{~g}$) must be converted to volume (V) using its density $\rho(\rho=\mathrm{m} / \mathrm{V}$)
\Rightarrow the mass of a substance can be then expressed as the mass found in 1 L of the solution
\Rightarrow the mass of the substance is finally converted to the substance amount (n) using MW ($m=n \times M W$)

Example - CONVERSION BETWEEN MOLARITY AND PERCENT CONCENTRATION

1.16 Calculate the percent concentration of $5,62 \mathrm{M}$ solution of $\mathrm{HNO}_{3}\left(\rho=1,18 \mathrm{~g} / \mathrm{cm}^{3}\right.$, $\left.\mathrm{MW}=63 \mathrm{~g} / \mathrm{mol}\right)$. (30%) solution:

5,62 M = 5,62 molar solution	\Rightarrow	$5,62 \mathrm{~mol}$ of HNO_{3} are found in 1 L of the solution
		(it is derived from the definition of molarity)
1) the volume 1 L is converted to the mass of the		
solution using the density: $\rho=\mathrm{m} / \mathrm{V} \rightarrow \mathrm{m}=\rho \times \mathrm{V}$	\Rightarrow	$5,62 \mathrm{~mol}$ of HNO_{3} are found in $\mathbf{1 1 8 0} \mathbf{g}$ of the solution
($\mathrm{m}=1,18 \mathrm{~g} / \mathrm{mL} \times 1000 \mathrm{~mL}=1800 \mathrm{~g}$)		
2) the substance amount is expressed as number	\Rightarrow	$5,62 \mathrm{~mol}$ of HNO_{3} are found in 1180 g of the solution
of moles found in $\mathbf{1 0 0} \mathbf{g}$ of the solution		x mol of HNO_{3} are found in 100 g of the solution
		it is the direct proportionality
		$x / 5,62=100 / 1180$
		$x=(100 / 1180) \times 5,62$
		$\mathbf{x}=0,476$
		0,476 mol of HNO_{3} are found in 100 g of the solution
3) the substance amount is converted to the mass	\Rightarrow	$63 \mathrm{~g} \mathrm{=} 1 \mathrm{~mol}$
using the value of molecular weight (MW)		$\mathrm{xg}=0,476 \mathrm{~mol}$
		it is the direct proportionality
		$\mathrm{x} / 63=0,476 / 1$
		$\mathrm{X}=(0,476 / 1) \times 63$
		$x=29,988 \approx 30,0$
		30 g of HNO_{3} are found in 100 g of the solution
		$=30 \mathrm{~g} / 100 \mathrm{~g}=30 \%$

The percent concentration of $5.62 \mathrm{M} \mathrm{HNO}_{3}$ is 30%.
1.17 Calculate the molar concentration of $10 \% \mathrm{HCl}\left(\rho=1,047 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{MW}=36,5 \mathrm{~g} / \mathrm{mol}\right) .(2,87 \mathrm{M})$ solution:

10\% solution	\Rightarrow	$\mathbf{1 0} \mathbf{g}$ of HCl are found in $\mathbf{1 0 0} \mathbf{g}$ of the solution
		(it is derived from the definition of percent conc.)
1) the mass 100 g is converted to volume of the		
solution using the density: $\rho=\mathrm{m} / \mathrm{V} \rightarrow \mathrm{V}=\mathrm{m} / \rho$	\Rightarrow	10 g of HCl are found in $95,5 \mathrm{~mL}$ of the solution
($V=100 / 1,047=95,5 \mathrm{~mL}$)		
2) the mass of HCl is expressed as number of	\Rightarrow	10 g of HCl are found in $95,5 \mathrm{~mL}$ of the solution
grams found in $1000 \mathbf{m L}(=1 \mathrm{~L})$ of the solution		xg of HCl are found in 1000 mL of the solution
		it is the direct proportionality
		$x / 10=1000 / 95,5$
		$x=(1000 / 95,5) \times 10$
		x = 104,7
		$104,7 \mathrm{~g}$ of HCl are found in 1000 mL of the solution
3) the mass of HCl is converted to the substance	\Rightarrow	$1 \mathrm{~mol}=36,5 \mathrm{~g}$
amount using the value of MW		$\underline{x ~ m o l ~}=104,7 \mathrm{~g}$
		it is the direct proportionality
		$x / 1=104,7 / 36,5$
		$\mathrm{x}=(104,7 / 36,5) \times 1$
		$x=2,87$
		2,87 $\mathbf{~ m o l ~ o f ~} \mathrm{HCl}$ are found in $\mathbf{1 0 0 0} \mathbf{~ m L}$ of the solution
		$=2,87 \mathrm{~mol} / \mathrm{L}=\mathbf{2 , 8 7} \mathbf{~ M}$

The molar concentration of $10 \% \mathrm{HCl}$ is $2,87 \mathrm{M}$.

Problems

1.18 Calculate the molar concentration of $30 \% \mathrm{HNO}_{3}\left(\rho=1,18 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{MW}=63 \mathrm{~g} / \mathrm{mol}\right) .(5,62 \mathrm{M})$
1.19 Calculate the percent concentration of $2,87 \mathrm{M} \mathrm{HCl}\left(\rho=1,047 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{MW}=36,5 \mathrm{~g} / \mathrm{mol}\right) .(10 \%)$
1.20 What is the percent concentration of normal saline solution (= physiologic solution) if its molarity is 150 mM . Use the simplification: 1 mL of the solution $=1 \mathrm{~g} \cdot(0,9 \%)$
1.21 Calculate molarity of the solution containing 14 g of $\mathrm{KOH}(\mathrm{MW}=56,1 \mathrm{~g} / \mathrm{mol})$ in 100 mL of the solution. Use the simplification: 1 mL of the solution $=1 \mathrm{~g} .(2,5 \mathrm{M})$
1.22 Calculate the molarity of $70 \% \mathrm{HClO}_{4}\left(\rho=1,67 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{MW}=100,5 \mathrm{~g} / \mathrm{mol}\right) .(11,63 \mathrm{M})$
1.23 Calculate the percent concentration of $11,63 \mathrm{M} \mathrm{HClO}_{4}\left(\rho=1,67 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{MW}=100,5 \mathrm{~g} / \mathrm{mol}\right) .(70 \%)$

Vladimíra Kvasnicová
November 2007

